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Abstract

The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relax-
ation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Com-
put. Phys. (2007) 822–845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K.
Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in gran-
ular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002–3024]. This model has the ability to treat multi-
temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of
interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conser-
vative character of this model poses however computational challenges in the presence of shocks. The first issue is related
to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine–Hugoniot relations
proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for
multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209–232] exact and approximate 2-shocks
Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative
variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov
schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of
the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is devel-
oped. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help
of an asymptotic analysis this heat exchange takes a similar form as the ‘pseudoviscosity’ introduced by Von Neumann and
Richtmyer [J. Von Neumann, R.D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl.
Phys. 21 (1950) 232–237]. The present Lagrangian numerical scheme thus combines Riemann solvers and artificial heat
exchanges. An Eulerian variant is then obtained by using the relaxation-projection method developed earlier by the
authors for the Euler equations. The method is validated against exact solutions based on the multiphase shock relations
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as well as exact solutions of the Euler equations in the context of interface problems. The method is able to solve interfaces
separating pure fluids or heterogeneous mixtures with very large density ratio and with very strong shocks.
� 2007 Elsevier Inc. All rights reserved.
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0. Introduction

The multiphase flow model of Kapila et al. [13] presents nice features regarding acoustic propagation in
dense granular materials as well as its ability to solve interface problems separating compressible fluids
[3,21] by using the same algorithm and equations everywhere (interfaces, mixtures and pure fluids). This model
involves five partial differential equations in the context of two fluids: two equations for the masses, one equa-
tion for the mixture momentum, one equation for the mixture energy and a non-conservative equation for the
volume fraction. With this approach, the mixture evolves under a unique pressure and velocity but remains in
non-equilibrium regarding thermal and chemical effects. These non-equilibrium effects can be used to model
chemical reactions and phase transformations [28].

Multiphase mixtures evolving under unique pressure and velocity are involved in many practical applica-
tions dealing with shock propagation into solid alloys, solid and liquid energetic materials, specific composite
materials, etc. Such mixtures evolve under a single pressure and velocity as mechanical relaxation effects are
stiff. Kapila et al. [13] model is obtained as the asymptotic limit of the Baer and Nunziato [5] non-equilibrium
model in the presence of stiff mechanical relaxation.

One of the main features of these hyperbolic multiphase flow models rely in their ability to solve interfaces
separating compressible fluids or mixtures of compressible fluids. During the last decade, many algorithms
have been developed in order to solve interface problems between compressible fluids by using the same
numerical strategy everywhere. Some of them use single pressure and velocity approaches [1,3,4,10,14,20–
22,26,30]. Other methods deal with several pressures and velocities [2,6,16,23–25].

The present work deals with the numerical approximation of Kapila et al. [13] model as it is an interest-
ing candidate to model extra physics such as phase transition, capillary effects, combustion etc. Such effects
are easier to model and analyze in the context of a single velocity flow model. However, the first difficulty is
related to the non-conservative character of this model and to the computation of shocks into mixtures.

Kapila et al. [13] model assumes isentropic evolution of the phases. It thus requires closure relations in the
presence of shocks. Corresponding Rankine–Hugoniot jump conditions are obtained in a companion paper
[27]. They are able to provide excellent predictions for shock propagation into mixtures when stiff velocity
and pressure relaxation effects are present. These relations have been validated against experiments for more
than 100 tests in the same reference, and over a larger set of experimental data by Trunine [34]. With the help
of these relations, exact and approximate Riemann solvers are built.

However, the Riemann problem solution is not sufficient to obtain a reliable numerical scheme. This is
again due to the presence of a non-conservative equation. Indeed, a conventional average for a non-conser-
vative variable such as the volume fraction has no physical sense. This difficulty is first illustrated with Godu-
nov [12] method where convergence errors are reported.

Thus another method is developed. It is based on the Lagrangian resolution of the system with the help of
internal energy equations for the phases. The pressure averages that appear in these non-conservative equa-
tions are determined in order to respect energy conservation and to mimic the shock relations given in Saurel
et al. [27]. However, the numerical diffusion of the shock front results in a thermodynamic path for the phases
that is inconsistent with the one imposed in the exact solution. Consequently, the method no longer converges
to the exact solution in the presence of strong shocks.

To reach convergence the method has to deal with the energy or entropy partition in the different phases.
This energy partition has to agree with the one of the exact solution, imposed by the Rankine–Hugoniot con-
ditions. In order to match this partition, the flow model is complemented by heat exchanges. An asymptotic
analysis of these exchanges enables their formulation as differential terms, involving the velocity divergence.
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Following [36] such terms can be used in the shock layer only. By making appropriate calibration of the heat
exchange coefficient (or its asymptotic analogue) accurate results are obtained with correct energy partition.

The last step is to project the solution in order to obtain an Eulerian scheme. Conventional projection is
inappropriate due to the presence of non-conservative variables. Thus, the relaxation-projection method of
Saurel et al. [26] is extended to the context of the multiphase model.

The paper is organized as follows.
The single velocity and single pressure multiphase flow model of Kapila et al. [13] is presented in Section 1.

The Riemann invariants and shocks relations of Saurel et al. [27] are used to derive exact and approximate
2-shocks Riemann solvers.

A conventional Godunov method is developed with the approximate solver in Section 2. Convergence dif-
ficulties that occur at shock front are illustrated.

In Section 3 a Lagrangian method is developed on the basis of the energy equations of the phases. The pres-
sure average involved in the numerical integration of these equations is determined in order to fulfill energy
conservation and to mimic the shock relations of Saurel et al. [27]. Again this method does not converge to the
exact solution. This is due to the numerical smearing of the shock front where it does not appear possible to
impose the correct thermodynamic path.

In Section 4 a correction to the previous method is developed. It relies on extra terms of the model, related
to heat exchanges. An asymptotic analysis is carried out in order to express these relaxation terms as differ-
ential ones. Doing so, heat exchange takes the form of artificial viscosity, which can be used in the shock layer
only. Under proper calibration of the heat exchange coefficient, the method provides results of high accuracy
and remains very robust.

In Section 5 the relaxation-projection method of Saurel et al. [26] is extended to project the solution onto
the Eulerian grid.
1. Multiphase flow model and Riemann solvers

We consider the single pressure and velocity multiphase flow model of Kapila et al. [13]:
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where q = (aq)1 + (aq)2 denotes the mixture density, qE ¼ qeþ qu2

2
¼ ðaqÞ1e1 þ ðaqÞ2e2 þ qu2

2
denotes the mix-

ture total energy per unit volume, and ak the volume fraction of phase k.
The internal energies of the phases e1 ¼ e1ðp; q1Þ; e2 ¼ e2ðp; q2Þ are given by the equations of state (EOS) of

each phase. The sound speeds of the phases c1 and c2 are also functions of pressure and phase’s density.
This model can be obtained by different methods. The first one consists in the determination of the asymp-

totic model, in the limit of stiff mechanical relaxation, of the non-equilibrium model of Baer and Nunziato [5].
This method was used by Kapila et al. [13]. The second method consists in expressing under differential form
the pressure equilibrium condition p1ðq1; s1Þ ¼ p2ðq2; s2Þ under the constraints that phases entropies (s1 and s2)
conserve along phase trajectories [21]. This model expresses the behavior of a two phase mixture that evolves
under a unique pressure and velocity but with two temperatures and entropies. It is of interest for the com-
putation of wave propagation in mixtures of condensed materials, as well as for the computation of interface
problems separating pure fluids and interfaces separating mixtures.
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For the sake of simplicity, it is assumed that each phase is governed by the stiffened gas (SG) EOS:
pkðqk; ekÞ ¼ ðck � 1Þqkek � ckp1k; k ¼ 1; 2: ð1:1Þ

The application of the mixture energy definition and pressure equilibrium condition results in a mixture EOS
of SG type (1.2) that closes system (1.0):
pðq; e; a1; a2Þ ¼
qe� a1c1p11

c1�1
þ a2c2p12

c2�1

� �
a1

c1�1
þ a2

c2�1

: ð1:2Þ
Obviously, other options are possible but the SG EOS is sufficient for the present developments.
In this section an exact Riemann solver for system (1.0) is built from which an approximate 2-shocks solver is

deduced. This solver is then used in the Godunov method to illustrate computational difficulties at shock fronts.

1.1. Exact Riemann solver

1.1.1. Basic relations

The multiphase flows model (1.0) is hyperbolic with the following characteristic velocities: u � cw, u + cw

and u, where cw is the equilibrium mixture sound velocity [37] defined by 1
qc2

w
¼ a1

q1c2
1

þ a2

q2c2
2

. The structure of

the Riemann problem associated to this model involves three waves and four different configurations (vacuum
appearance is excluded of the present analysis). The jump relations through the various waves must be deter-
mined to obtain the intermediate states.

(a) Riemann invariants

A different formulation of the system (1.0) is used in this part. The set of unknowns is now composed of
the mixture density q, the velocity u, the mass fraction of one of the phases Y1 and the entropy of each
phase s1 and s2. This leads to the next system:
oq
ot
þ u

oq
ox
þ q

ou
ox
¼ 0;

ou
ot
þ u

ou
ox
þ 1

q
op
ox
¼ 0;

oY 1

ot
þ u

oY 1

ox
¼ 0;

os1

ot
þ u

os1

ox
¼ 0;

os2

ot
þ u

os2

ox
¼ 0:

ð1:3Þ
For the Riemann invariants determination, the different variables are expressed in the form: W ðx; tÞ ¼
~W ð1Þ, with 1 = x � rt, r being an arbitrary wave speed. It does imply oW
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system (1.3) becomes:
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System (1.4) is now used to determine the different Riemann invariants, through the rarefaction waves as
well as contact surfaces.

(b) Interface conditions

Interface conditions determination is obvious from system (1.4) as this wave propagates at the fluid
velocity r = u. That leads to:
½u� ¼ 0;

½p� ¼ 0
ð1:5Þ
with the notation [f] = fR � fL, the jump of any function f between a right state (R) and a left state (L).
(c) Rarefaction waves

Rarefaction waves propagate at speed r = u ± cw. The Riemann invariants through such waves are:
dp ¼ �qcw du;

dp ¼ c2
w dq;

dY 1 ¼ 0;

ds1 ¼ 0;

ds2 ¼ 0:

ð1:6Þ
Signs + and � correspond respectively to right- and left-facing waves. Note that the second invariant
is redundant with the two last ones. Indeed, the mixture entropy invariant reads ds ¼

P
kY k dsk ¼ 0

and implies dp ¼ c2
w dq.

By using the SG EOS for each phase, the two last equations of system (1.6) are integrated yielding:
qk ¼ q0
k

p þ p1k

p0 þ p1k

� � 1
ck

; k ¼ 1; 2: ð1:7Þ
The first equation of system (1.6) involves the mixture acoustic impedance qcw. With the present mixture
EOS (1.2) it only depends on the pressure and is given by the following expression:
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: ð1:8Þ
Unfortunately, the first equation of system (1.6) with (1.8) cannot be integrated analytically. A numerical
integration method will be used to obtain the corresponding variation. The details will be given in the
next subsection.

(d) Shock relations
Except regarding the first equation of system (1.0) that expresses under non-conservative form, jump
conditions are available for the other equations:
ðaqÞ�kðu� � rÞ ¼ ðaqÞ0kðu0 � rÞ;
q�u�ðu� � rÞ þ p� ¼ q0u0ðu0 � rÞ þ p0;

q�ðu� � rÞE� þ p�u� ¼ q0ðu0 � rÞE0 þ p0u0;

ð1:9Þ
where r represents the shock velocity and the superscripts ‘0’ and ‘*’ correspond, respectively, to pre-
and post-shock states.
These equations can also be written as:
Y �k ¼ Y 0
k ;

q�ðu� � rÞ ¼ q0ðu0 � rÞ ¼ m;

p� � p0 þ m2ðv� � v0Þ ¼ 0;

e� � e0 þ p� þ p0

2
ðv� � v0Þ ¼ 0;

ð1:10Þ
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where the mass fraction is given by: Yk = akqk/q. The mixture internal energy is defined by e = Y1e1 + Y2e2

and the mixture specific volume reads v = Y1v1 + Y2v2 (where vk = 1/qk). The closure of system (1.10) neces-
sitates an extra relation. In a companion paper [27] an appropriate kinetic relation is proposed. We summarize
hereafter the basis of this analysis.

� The theoretical analysis starts with observations of shock layers in multiphase mixtures computed with the
seven equations non-equilibrium multiphase flow model [5] in the presence of mechanical relaxation. For
sufficiently weak shock waves, it is shown that the two-phase shock has a smooth profile, and that at each
point of this layer, the two phases have nearly the same velocity and pressure. This behavior is explained by
a dispersion mechanism due to relaxation effects and to the differences in the frozen sound speed of the
phases. This last feature allows acoustic waves of the post-shock state to cross the shock front. This feature
is absent in single phase flows and results here in a smooth shock layer.
� As the shock layer is smooth and mechanical equilibrium assumption valid at each point of this layer, inte-

gration between pre- and post-shock states is simplified. Rather than considering the integration of a non-
equilibrium model with seven partial differential equations [5] involving relaxation and non conservative
terms, it is possible to consider its asymptotic limit with stiff pressure and velocity relaxation. In this con-
text, the two energy equations of the seven equation model after asymptotic analysis reduce to:
ak qk
dek

dt
þ p

ou
ox

� �
¼ �p

dak

dt
; or

dek

dt
þ p

dvk

dt
¼ 0; or

dsk

dt
¼ 0 ð1:11Þ
with, ek = ek(p,qk). It is interesting to note that the drag work is absent in the first form of Eqs. (1.11) while
the pressure work ð�pdak

dt Þ is still present. It means that drag contribution to the evolution of internal energy
is negligible in this limit. In general, integration of any formulation of the phase’s energy equations (1.10)
has the potential to provide a kinetic relation. However, the choice of the energy equation form and the way
it is integrated has importance as developed hereafter.
� Two main options are possible with the integration of (1.11).

– Constant entropy relation

Integration of the third form of (1.11) results in:
s�k ¼ s0
k : ð1:12Þ

However, if such a choice is done for each phase k, the energy conservation in (1.10) is violated. Another
option is possible. It consists in using (1.12) for one of the phases only while preserving energy conser-
vation. Such option is:

* Inaccurate when compared to experimental data.

* Not symmetric. This may have serious consequences when dealing with an arbitrary number of fluids.

* Inconsistent with the single phase limit. Indeed the model must deal with arbitrary concentrations in
particular when solving interface problems.

The option (1.12) is thus rejected.
– Hugoniot type relation

It consists in integrating the second differential form of Eqs. (1.11). Expressed in the shock wave frame
under steady flow assumption it reads:

dek

dx
þ p

dvk

dx
¼ 0:

Its integration between pre- and post-shock states reads:Z þ1

�1

dekðxÞ
dx

dxþ
Z þ1

�1
pðxÞ dvkðxÞ

dx
dx ¼ 0:

It can be written as:

e�k � e0
k þ p̂k

Z þ1

�1

dvkðxÞ
dx

dx ¼ 0 ð1:13Þ
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with

p̂k ¼
Rþ1
�1 pðxÞ dvkðxÞ

dx dxRþ1
�1

dvkðxÞ
dx dx

¼
Rþ1
�1 pðxÞ dvkðxÞ

dx dx

v�k � v0
k

:

A relation between the various pressure averages p̂1 and p̂2 may be found. Indeed, the pressure average of
phase 1 can be written as:

p̂1 ¼
Rþ1
�1 pðxÞ dv1

dv2

dv2ðxÞ
dx dx

v�1 � v0
1

: ð1:14Þ

As shown in Saurel et al. [27], for a given shock speed, dv1

dv2
is nearly constant inside the shock layer. There-

fore, dv1

dv2
is approximated as:

dv1

dv2

¼ v�1 � v0
1

v�2 � v0
2

: ð1:15Þ

Note that this approximation is necessarily valid for weak shocks. By inserting this approximation into
(1.14) we get:

p̂1 ¼
Rþ1
�1 pðxÞ dv2ðxÞ

dx dx

v�2 � v0
2

¼ p̂2 ¼ p̂:

It means that both pressure averages are equal. Eq. (1.13) now becomes

e�k � e0
k þ p̂ðv�k � v0

kÞ ¼ 0: ð1:16Þ
In this equation the pressure average p̂ has to be determined. This average is of capital importance: all
differences between different thermodynamic paths rely in the estimate for this average. This average
must be compatible with the energy conservation in (1.10), written in the form:

e� � e0 þ �pðv� � v0Þ ¼ 0

for which the pressure average is unambiguously known: �p ¼ ðp� þ p0Þ=2.
By using the mixture internal energy and specific volume definitions, the mixture energy equation
becomes:

Y 1ðe�1 � e0
1 þ �pðv�1 � v0

1ÞÞ þ Y 2ðe�2 � e0
2 þ �pðv�2 � v0

2ÞÞ ¼ 0:

Replacing in this equation the phase’s internal energy variations with (1.16) we get:

Y 1ð�p � p̂Þðv�1 � v0
1Þ þ Y 2ð�p � p̂Þðv�2 � v0

2Þ ¼ 0:

That is:

ð�p � p̂Þðv� � v0Þ ¼ 0:

As the specific volume varies across a shock wave, the energy conservation implies: p̂ ¼ �p. And the
phase’s internal energy jumps read:

e�k � e0
k þ

p� þ p0

2
ðv�k � v0

kÞ ¼ 0: ð1:17Þ

Relation (1.17) is the kinetic relation that closes system (1.10). We note that:

* It corresponds to the Hugoniot relation for each phase.

* By construction it preserves conservation of the total energy.

* It is in agreement with the single phase limit.

* It preserves symmetry.

* It guarantees volume fraction positivity.

* It is shown in Saurel et al. [27] that the mixture Hugoniot is tangent to the mixture isentrope.

* It has been validated for more than 100 tests involving shocks with 12 different mixtures. These rela-
tions were proposed independently by Trunine [34] and validated against 230 tests involving 23 dif-
ferent mixtures. The predictions of (1.10) with (1.17) always showed excellent agreement with the
experiments.
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A convenient form of these jump conditions when used into a Riemann solver is obtained by expressing the
various variables as functions of the post-shock pressure. When the phases are governed by the SG EOS (1.1)
the system reads:
Fi
u ¼ u0 � mðv0 � vÞ;
p ¼ p0 þ m2ðv0 � vÞ;
Y k ¼ Y 0

k ;

qH
k ¼ q0

k

ðck þ 1Þðp þ p1kÞ þ ðck � 1Þðp0 þ p1kÞ
ðck � 1Þðp þ p1kÞ þ ðck þ 1Þðp0 þ p1kÞ

; k ¼ 1; 2:

ð1:18Þ
The signs + and� in the first equation correspond, respectively, to right- and left-facing waves. In these relations
the shock mass flow rate m of the mixture appears. As the mixture specific volume is only function of pressure

ðvðpÞ ¼
P

k
Y k

qH
k ðpÞ
Þ, the shock mixture mass flow rate only depends on the pressure too: m ¼

ffiffiffiffiffiffiffiffiffiffiffi
p�p0

v0�vðpÞ

q
.

1.1.2. Algorithm

All the necessary relations to solve the Riemann problem shown in Fig. 1 are now available. It is noticeable
that whatever the wave considered, the jump relations depend only on the pressure.

Depending on the value of pressure p* two cases are to be considered:

� If p* > p0, a shock wave is present and system (1.18) is used to obtain the solution behind this wave.
� If p* 6 p0, a rarefaction wave is present and the Riemann invariants (1.8) are used.

The material velocity can always be written in the form u = u0 ± U(p) with UðpÞ ¼ ðp�p0Þ
m for a shock wave

and UðpÞ ¼
R p

p0
dp
qcw

for a rarefaction wave, where the sign + (�) corresponds to the right- (left-) facing wave.
A numerical integration is necessary to compute UðpÞ ¼

R p
p0

dp
qcw

. The Gauss–Legendre method is used:
Z p

p0

dp
qcw
¼ p � p0

2

Xn

k¼1

xk
1

qcwðxkÞ
ð1:19Þ
with:
xk ¼
p þ p0

2
þ p � p0

2
nk; nk 2 ½�1; 1�; xk 2 ½p0; p�; ð1:20Þ
where xk and nk are the values of the Gauss–Legendre coefficients. A six points approximation is accurate
enough in the present applications.

Whatever the wave pattern considered, the velocity is then determined by:
u�L ¼ uL � ULðp�Þ;
u�R ¼ uR þ URðp�Þ:

ð1:21Þ
x

t

SL

SR

UL

CD

UL
* UR

*

UR

g. 1. Structure of the Riemann problem. The left- and right-facing waves (SL and SR) are either shock or rarefaction waves.
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At the contact surface the second interface condition must be fulfilled ðu�L ¼ u�R ¼ u�Þ. Eqs. (1.21) are com-
bined to obtain a single equation only depending on the pressure p*.
Fig. 2.
limit, t
f ðp�Þ ¼ u�R � u�L ¼ uR � uL þ ULðp�Þ þ URðp�Þ ¼ 0: ð1:22Þ

Eq. (1.22) is nonlinear and is solved by the Newton–Raphson method. Reaching the solution p*, the velocity u*

is then calculated thanks to one of the relations (1.21). The remaining flow variables are determined by rela-
tions (1.8) or (1.18) according to the wave’s type.

1.1.3. Examples and validations

1.1.3.1. An interface separating almost pure fluids. In this part, the accuracy of the exact solver is checked in a
limit case. An interface separates two almost pure fluids. Because the fluids are almost pure, the multiphase
Riemann problem solution must converge to the Euler equations solution and a direct comparison is then
possible.

A tube of 1 m long contains two chambers separated by an interface at the location x = 0.8 m. Each cham-
ber contains a mixture of water and air. The initial density of the water is qwater = 1000 kg m�3 and the EOS
parameters are cwater = 4.4 and P1,water = 6 · 108 Pa. The initial density of air is qair = 10 kg m�3 and EOS
parameters are cair = 1.4 and P1,air = 0 Pa. The left chamber contains a very small volume fraction of air
aair = 10�6 and the pressure is equal to 109 Pa. The right chamber contains the same fluids but the volume
fractions are reversed. The pressure is equal to 105 Pa. In both chambers the velocity is equal to 0 m s�1.

The exact solutions of the single phase Euler equations and the multiphase flow model (1.0) are compared
in Fig. 2 at time t = 220 ls.
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1.1.3.2. A shock tube problem involving two mixtures. A one meter length tube contains two chambers separated
by an interface at the location x = 0.6 m. The same mixture made of epoxy and spinel fills the left and right
chambers. The initial density of the epoxy is qepoxy = 1185 kg m�3 and its EOS parameters are cepoxy = 2.43
and P1,epoxy = 5.3 · 109 Pa. The spinel has an initial density equal to qspinel = 3622 kg m�3 and is character-
ized by cspinel = 1.62 and P1,spinel = 141 · 109 Pa.

The initial volume fractions in both chambers are: aepoxy = 0.5954 (aspinel = 1 � aepoxy). This value corre-
sponds to the one used in the experiments recorded in the book of Marsh [18]. The pressure at the left of
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Fig. 3. Epoxy–spinel shock tube. This solution will serve as reference for the numerical scheme that will be developed.
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the interface is equal to 2 · 1011 Pa, while the pressure in the right chamber is equal to 105 Pa. All the materials
are initially at rest. The solution at time t = 29 ls is shown in Fig. 3.

1.2. Approximate Riemann solver

In this part a 2-shocks approximate solver is developed. The main drawback with the previous exact solver
is related to the Riemann invariants that require a numerical integration. It implies several difficulties:

� The computation of sonic points is expensive.
� It prevents from a general use of the model. Indeed, with general EOS the numerical values of the acoustic

impedance (1.9) at the integration points will have to be first computed: the roots of the nonlinear function
linking the density and the pressure have to be determined. Then the Riemann invariant can be computed.
The computational cost is thus considerably increased.

These remarks restrict the choice for the method to treat rarefaction waves. All rarefaction waves will be
treated as rarefaction ‘shocks’ with relations (1.18). Let us examine the reasons why this is a reasonable choice:

� The Rankine–Hugoniot relations (1.18) are algebraic and guarantee conservation.
� It was shown in Saurel et al. [27] that the mixture Hugoniot curve and isentrope are tangent: for small vari-

ations the Hugoniot curve and isentrope are merged.

The approximate Riemann solver is thus a 2-shocks solver [33] and the algorithm is simplified.
The pressure at the contact surface is obtained by solving the non-linear equation:
f ðp�Þ ¼ u�R � u�L ¼ uR � uL þ
p� � pR

mR

þ p� � pL

mL

ð1:23Þ
with the same definitions as in (1.18).
The solution is reached with the Newton–Raphson method. Once the pressure p* is obtained, the remaining

flow variables are determined with (1.18). This approximate solver will be used in the various numerical
schemes examined in the rest of the paper.

2. A conventional Godunov type method

We examine in this section the simplest way to project the flow variables onto the computational cell. For
the sake of simplicity a Lagrangian version of the Godunov method is considered. A schematic view of the
wave’s propagation into a Lagrangian cell is shown in Fig. 4.

Only two waves enter the Lagrangian cell:
xi-1/ 2 xi+1/ 2

t

t+ t

x

Eulerian cell boundary

u*i-1/2 u*i+1/ 2
+

2/1iS

Lagrangian cell boundary(at t+Δ t)

+ 2/1iS

xi-1/ 2 xi+1/ 2

t

t+Δt

x

i-1/2 i+1/ 2
+

2/1i
−
+ 2/1iS

Fig. 4. Schematic view of the waves incoming a Lagrangian cell.



F. Petitpas et al. / Journal of Computational Physics 225 (2007) 2214–2248 2225
� Sþi�1=2 represents a right-facing shock or rarefaction wave.
� S�iþ1=2 represents a left-facing shock or rarefaction wave.

The volume of the cell at time tn+1 obeys the relation Dxnþ1
i ¼ Dxn

i þ Dtðu�iþ1=2 � u�i�1=2Þ.
This volume can be split into three sub-volumes, each of them containing the fluid in three different states:

L1 ¼ DtðSþi�1=2 � u�i�1=2Þ; L3 ¼ Dtðu�iþ1=2 � S�iþ1:2Þ; L2 ¼ Dxnþ1
i � L1 � L3.

Cell volume fractions can be defined: bj ¼
Lj

Dxnþ1
i
; j ¼ 1; . . . ; 3.

The Godunov projection then reads:
Unþ1
i ¼

X3

j¼1

bjU
�
j ð2:1Þ
with U �1 ¼ U �R;i�1=2;U
�
2 ¼ U n

i ;U
�
3 ¼ U �L;iþ1=2, where indexes L and R refer to left and right states in the Riemann

problem. The Riemann problem solution allows the computation of the sub-volumes fractions bj and of the
state vectors U �j ¼ ða�1j; a

�
1jq
�
1j; a

�
2jq
�
2j; q

�
j u�j ; q

�
j E�j Þ

T that contains the volume fraction variable. This provides a
numerical scheme for the non-conservative volume fraction equation. The pressure is then computed with
the mixture EOS (1.2). The results with this method are compared with the exact multiphase solution in
Fig. 5 with the initial data of Fig. 3.

The agreement between the computed solution and the exact one is not perfect in particular regarding the
volume fraction jump at shock front.

Let us mention that:

� The variables akqk experience the same error in the jump as the mixture density.
� The error does not change when the exact Riemann solver is used. We have developed an extended ver-

sion of Formula (2.1) when an exact solver is used instead of a 2-shocks approximate solver. It is more
complex because expansion fans have to be integrated. No noticeable improvement of the solution was
observed.
� The error remains the same under mesh refinement. An explanation of this observation is given in Section

5.1.

The convergence errors observed in Fig. 5 may be explained at least by two arguments:

� The first reason is that the volume fraction is not a conservative variable. Thus the average (2.1) for this
variable has no physical sense.
� The second reason is that the sub-volumes fractions bj have physical variations when the pressure in each

sub-volume changes from the Riemann problem pressure p�j to the cell pressure computed with the mixture
EOS (1.2) and cell averaged variables. A volume variation process is present in the cell, due to pressure
relaxation, whose influence is not accounted for by (2.1).

In order to account for the sub-volumes fractions variations inside the computational cell a more sophis-
ticated Lagrange method is derived to improve the accuracy.
3. A Lagrangian method based on internal energy equations

The reason why we use a Lagrangian scheme is due to the sound speed of the multiphase flows model.
Acoustic waves propagates with the Wood [37] speed of sound whose non-monotonic behavior versus volume
fraction is shown in Fig. 6 for the liquid water–air mixture.

Consider for example the advection of a liquid–gas interface, corresponding in this model to a volume frac-
tion discontinuity. During numerical resolution, this discontinuity will become a mixture zone. In this zone,
the sound speed has a non-monotonic behavior. It may result in the presence of two sonic points in the mix-
ture zone even if the flow is subsonic in the two pure fluids. Capturing sonic points for this model poses dif-
ficulties as Riemann invariants cannot be integrated explicitly. Using an approximate Riemann solver where
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Fig. 5. Epoxy–spinel shock tube. Comparison of numerical results with a conventional Godunov type method (symbols) and the
multiphase exact solution (solid). A 200 cells mesh is used. Convergence difficulties appear at the shock front.
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the left and right facing waves are treated as discontinuities is possible. When embedded in an Eulerian
method an error in the sampling of the solution for the fluxes computation will occur. This error will occur
two times (for each sonic point) in the interface mixture zone for each time step. It finally result in computa-
tional difficulties and even failures. This difficulty is reported in the literature for barotropic flows with the
same non-monotonic sound speed, used for example in cavitating flows [9,29,35]. These references report this
problem in the simpler context of a conservative model.
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There are at least two ways to circumvent this difficulty.
The first is to use a non-equilibrium model with relaxation. In the context of the present paper an appro-

priate model could be the seven equations model [5] that possesses frozen sound speed with monotonic behav-
iors. Accurate Eulerian methods are available for its resolution [2] that can be developed in unstructured grids
[16].

The second option consists in using a Lagrange-projection method. The Lagrange step does not need the
complete Riemann problem solution. In particular the expansion fan does not need resolution. The projection
step can be done either with geometrical arguments in the context of the conventional Godunov method (2.1)
or by a relaxation method, as developed in Saurel et al. [26]. In both cases, the presence of sonic points is trans-
parent. However such method is difficult to extend in non-Cartesian grids. An extension by dimensional split-
ting on Cartesian grids will be presented. Obviously, this is a restriction. But most of the applications with
interfaces, strong shocks and detonations can be done on Cartesian grids.

With the Lagrangian method the vector of conservative variables ðU ¼ ½a1q1; a2q2; qu; qE�TÞ is updated
unambiguously by the Godunov method:
ðUDxÞnþ1
i ¼ ðUDxÞni � DtðF �lag;iþ1=2 � F �lag;i�1=2Þ; ð3:1Þ
where F lag ¼ ½0; 0; p; pu�T represents the Lagrangian flux and cell averages are defined by: Ui ¼ 1
Dxi

R xiþ1=2

xi�1=2
U dx.

The superscript ‘*’ denotes the solution of the Riemann problem. The evolution of the cell volume is given by:
Dxnþ1

i ¼ Dxn
i þ Dtðu�iþ1=2 � u�i�1=2Þ.

From the conservative variables vector U mixture variables ðq; u; eÞ can also be deduced.
The non-conservative volume fraction equation of system (1.0) and the saturation constraint (a1 + a2 = 1)

can be replaced by non-conservative internal energy equations:
dek

dt
þ p

dvk

dt
¼ 0; k ¼ 1; 2: ð3:2Þ
Time integration of these equations in cell i reads:
enþ1
i;k � en

i;k þ ~pi;kðvnþ1
i;k � vn

i;kÞ ¼ 0 with ~pi;k ¼
1

ðvnþ1
i;k � vn

i;kÞ

Z tnþ1

tn
p

dvk

dt
dt; ð3:3Þ
where the pressure averages ~pi;k have to be determined.
From system (3.1) it is possible to determine the evolution of the mixture internal energy:
enþ1
i � en

i þ
ðpuÞ�iþ1=2 � ðpuÞ�i�1=2 �

unþ1
i þun

i
2
ðp�iþ1=2 � p�i�1=2Þ

u�iþ1=2 � u�i�1=2

ðvnþ1
i � vn

i Þ ¼ 0: ð3:4Þ



2228 F. Petitpas et al. / Journal of Computational Physics 225 (2007) 2214–2248
We now ask to the numerical approximation (3.3) to fulfil the same principles as the shock jump conditions
(1.10) and (1.17):

� Equal pressure averages: ~pi;1 ¼ ~pi;2 ¼ ~pi.
� Energy conservation. Summation of mass weighted energy Eqs. (3.3) yields:
ðY i;1enþ1
i;1 þ Y i;2enþ1

i;2 Þ � ðY i;1en
i;1 þ Y i;2en

i;2Þ þ ~piððY i;1vnþ1
i;1 þ Y i;2vnþ1

i;2 Þ � ðY i;1vn
i;1 þ Y i;2vn

i;2ÞÞ ¼ 0: ð3:5Þ
Identifying (3.4) and (3.5) the pressure average ~pi is deduced:
~pi ¼
ðpuÞ�iþ1=2 � ðpuÞ�i�1=2 �

unþ1
i þun

i
2
ðp�iþ1=2 � p�i�1=2Þ

u�iþ1=2 � u�i�1=2

: ð3:6Þ
Equations of the phase’s internal energies (3.3) then read:
enþ1
i;k ðpnþ1

i ; vnþ1
i;k Þ � en

i;kðpn
i ; v

n
i;kÞ þ ~piðvnþ1

i;k � vn
i;kÞ ¼ 0; k ¼ 1; 2: ð3:7Þ
By inserting the phases EOS in this system the phases specific volumes express as:
vnþ1
i;k ¼ vnþ1

i;k ðpnþ1
i Þ; k ¼ 1; 2: ð3:8Þ
The mass conservation constraint,
vnþ1
i ¼

X
k

Y i;kvnþ1
i;k ðpnþ1

i Þ; ð3:9Þ
provides a nonlinear equation whose resolution yields the cell pressure pnþ1
i . In the context of SG EOS, the cell

pressure reads:
pnþ1
i ¼ �

X
k¼1;2

Ai;k

2
þ
X
k¼1;2

Y i;kvn
i;kBi;k

2vnþ1
i

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k¼1;2

Ai;k

2
�
X
k¼1;2

Y i;kvn
i;kBi;k

2vnþ1
i

" #2

þ
Y

k¼1;2

Ai;k

X
k¼1;2

Y i;kvn
i;kBi;k

vnþ1
i Ai;k

� 1

 !vuut :

ð3:10Þ

With Ai;k ¼ ðckp1;k þ ðck � 1Þ~piÞ; Bi;k ¼ ðpn

i þ ckp1;k þ ðck � 1Þ~piÞ; k ¼ 1; 2:
For more general EOS a Newton–Raphson method is used. Once the cell pressure is determined, all remain-

ing variables (volume fractions, specific volumes etc.) are readily obtained.
This method is tested under the same conditions as those of Fig. 5. The results are shown in Fig. 7.
In spite of the volume variations that are accounted for in the resolution of (3.9), convergence is not

reached and no improvement is visible compared to the Godunov method. The main reason for the non-con-
vergence of the two methods described in Sections 1 and 2 now appears as a consequence of the numerical
diffusion of the shock front.

The shock front is solved as a succession of weak shocks whose thermodynamic path is different of the mix-
ture Hugoniot curve defined by (1.10) and (1.17). It results in an incorrect partition of the internal energies or
entropies of the phases. This last remark is the starting point of a deeper analysis and improved Lagrangian
method. To restore the correct partition of the energies, artificial heat exchanges in the shock layer are
introduced.
4. A Lagrangian method with artificial heat exchanges

4.1. Analysis of the numerical shock layer

Let us first recall some basic observation of numerical schemes in the context of single phase flows. To illus-
trate the presentation, let us consider the same shock tube test problem as previously where the spinel has been
replaced by epoxy. It means that epoxy is present everywhere, at high pressure in the left chamber and at low
pressure in the right chamber. The shock wave now evolves in a single phase fluid. It is interesting to compare
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Fig. 7. Epoxy–spinel shock tube. Comparison of numerical results with the Lagrangian method based on internal energy equations
(symbols) and the multiphase exact solution (solid). A 200 cells mesh is used. Convergence difficulties are again noticeable at the shock
front.
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the thermodynamic path followed by the fluid in the shock layer to the theoretical Hugoniot curve. Such com-
parison is shown in Fig. 8.

It appears clearly that the thermodynamic paths are very different. This is due to the succession of numer-
ical weak shocks that propagate into the cell that do not impose the same thermodynamic transformation as a
single strong shock [8]. The successive cell averages produce also transformations in disagreement with the
single shock Hugoniot.
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However, this numerical phenomenon has no consequence on the computation of the shocked state for sin-
gle phase flows. As shown in Fig. 8, the end of the shock layer merges with the theoretical Hugoniot state. This
is a consequence of conservation properties of the Euler equations.

When dealing with multiphase mixtures, the same deviation from the theoretical Hugoniot appears and has
more serious consequences as observed previously in Sections 1 and 2. The reason is that for each weak shock
that enter the cell, the equation of state changes. Indeed, for multiphase mixtures, there is an extra degree of
freedom characterized by the volume fraction. At a given point of the numerical shock, as shown in Fig. 8,
there is no hope that this point belongs to the theoretical mixture Hugoniot curve. It follows that the corre-
sponding volume fraction is in error. Consequently, the mixture EOS (1.2) is in error too. These errors cumu-
late along the shock layer and contrarily to single phase flows, the end state does not belong to the mixture
Hugoniot.

To illustrate this difficulty, the numerical phases and mixture Hugoniot curves are compared to the theo-
retical ones in Fig. 9.

Shock tracking is an option to cure such difficulty [11,17,19]. Another option is to correct partition of the
energies in the shock layer by introducing artificial heat transfers.

4.2. Artificial heat exchanges

In the presence of heat transfers, the single velocity and single pressure two-phase flow model reads
[13]:
oa1

ot
þ u

oa1

ox
¼ q2c2

2 � q1c2
1

q1c2
1

a1
þ q2c2

2

a2

ou
ox
þ a1a2

a2q1c2
1 þ a1q2c2

2

C1

a1

þ C2

a2

� �
HðT 2 � T 1Þ;

oa1q1

ot
þ oa1q1u

ox
¼ 0;

oa2q2

ot
þ oa2q2u

ox
¼ 0;

oqu
ot
þ oðqu2 þ pÞ

ox
¼ 0;

oqE
ot
þ oðqE þ pÞu

ox
¼ 0;

ð4:1Þ
where Ck ¼ ðvk
opk
oek
Þvk

represents the Grüneisen coefficient of phase k. Heat exchange is modeled with a simple

exchange coefficient H that accounts for the thermal conductivities and exchange surface. The internal energy
equations now read:
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de1

dt
þ p

dv1

dt
¼ H

Y 1q
ðT 2 � T 1Þ;

de2

dt
þ p

dv2

dt
¼ � H

Y 2q
ðT 2 � T 1Þ:

ð4:2Þ
Obviously this modeling is in agreement with the entropy inequality:
ds
dt
¼ dðY 1s1 þ Y 2s2Þ

dt
¼ H

qT 1T 2

ðT 2 � T 1Þ2 P 0:
In order to express heat exchanges under differential form an asymptotic analysis is achieved. This differential
form is needed in order that heat exchanges be present in the shock layer only. We assume stiff thermal relax-
ation: H ¼ H0

e where e! 0+. Stiffness of thermal relaxation remains however slow compared to mechanical
relaxation [13]. Each flow variable f is expressed by the asymptotic expansion: f = f0 + ef1 where f0 represents
the equilibrium state and f1 a fluctuation.

At order 1
e the energy equations imply: T 0

2 ¼ T 0
1.

At zero order they become:
de0
1

dt
þ p0 dv0

1

dt
¼ H 0

Y 0
1q

0
ðT 1

2 � T 1
1Þ;

de0
2

dt
þ p0 dv0

2

dt
¼ � H 0

Y 0
2q

0
ðT 1

2 � T 1
1Þ:
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In terms of temperatures, they become:
dT 0
1

dt
¼ C0

1T 0
1

a0
1

1

q0
1C

0
1c0

v;1T 0
1

� q0c0
w

2

q0
1c0

1
2q0

2c0
2

2

C0
1C

0
2

C0

 !
H 0ðT 1

2 � T 1
1Þ �

q0c0
w

2
a0

1a
0
2ðq0

2c0
2

2 � q0
1c0

1

2Þ
q0

1c0
1

2q0
2c0

2
2

þ a0
1

 !
ou0

ox

( )
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The ‘heat exchange’ thus expresses:
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This asymptotic form of the heat transfer is now inserted in the non-equilibrium flow model (4.1) and (4.2)
where superscript ‘0’ are omitted for the sake of clarity:
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This limit model agrees with the entropy inequality:
ds
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¼ dðY 1s1 þ Y 2s2Þ
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This model will be used inside the shock layer only. As the shock width is small, thermal equilibrium is not
reached even if thermal relaxation is stiff.

Model (4.3) is obviously non-conservative and the integration of the term in factor of the velocity diver-
gence is an issue. Moreover, our aim is not to deal with physical heat exchanges, but with artificial ones inside
the shock layer. To build a reliable approximation method, the information coming from the physics are used.
We now introduce some simplifications. Inside the shock layer, all flow variables that appear in factor of the
velocity divergence are function of the shock speed or any other flow variable. We decide to express these flow
variables as function of the mixture specific volume. Expressing the mixture mass conservation equation under
the form:
dv
dt
� v

ou
ox
¼ 0:
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The internal energy equations (4.3) thus read:
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Y 1
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These equations can be written under a more practical form:
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þ p

dv1

dt
¼ 1

Y 1

dlðvÞv
dt

;

de2

dt
þ p

dv2

dt
¼ � 1

Y 2

dlðvÞv
dt

;

ð4:5Þ
where functions m and l are linked by the relation: m(v) = vl 0(v) + l(v). Presentation of the energy equations
under formulation (4.5) facilitates integration and provides, as will be shown later, mesh independent results.

Integration of Eqs. (4.5) during a time step yields the following numerical scheme:
enþ1
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ð4:6Þ
where
gðou
oxÞ ¼

1 if ou
ox < 0;

0 otherwise:

	

The function g guarantees that heat exchanges will be used in the shock layer only.

The closure of this method necessitates the determination of the heat exchange function l. This issue is
addressed in the next paragraph. Once this function is determined, the numerical scheme corresponds to:

� Relations (3.1) for the conservative variables,
� Relation (3.6) for the pressure average estimate,
� Relations (4.6) for the update of the internal energies (they replace Relations (3.7) of the preceding

algorithm).
� Relation (3.10) is replaced by:
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ð4:7Þ

With Ai;k ¼ ðckp1;k þ ðck � 1Þ~piÞ;Bi;k ¼ ðpn

i þ ckp1;k þ ðck � 1Þ~piÞ; k ¼ 1; 2:

This method is tested on the same shock tube test problem as those of Fig. 7. Corresponding results are
shown in Fig. 10.

Artificial heat exchanges considerably improve the results. The method is mesh independent as shown in
Fig. 11.
4.3. Determination of the heat exchange function l

For a given two-phase mixture (epoxy–spinel for example), in a given initial state ðv0; u0; p0; Y 10; a10Þ, func-
tion l is constructed step by step by piecewise linear approximations. The construction method is based on the
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Fig. 10. Epoxy–spinel shock tube. Comparison of numerical results with the Lagrangian method including artificial heat exchanges in the
shock layer (symbols) and the multiphase exact solution (solid). A 200 cells mesh is used. Accuracy of the results is considerably improved.
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comparison of computed results with the preceding numerical scheme and exact solution obtained for shock
relations or exact Riemann problem solution detailed in Section 1.1.

For weak shocks no correction is necessary. Thus, in the range [v0;v1], l(v) is taken equal to zero. v0 rep-
resents the specific volume at standard state and v1 the limit of specific volume where accurate results are
obtained without heat exchanges correction.

When the shock becomes stronger, up to a specific volume v2, l is approximated by a linear function
l1(v) = a1(v � v1). The slope a1 of the function is determined in order that the agreement between computed
and exact results be perfect in the shocked specific volume range [v1;v2].
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Then up to a new value of the specific volume v3, l is approximated by a new linear function
l2(v) = a2(v � v2) + l1(v2). The new slope a2 is determined in order that the agreement between numerical
and exact solutions be perfect in the shocked specific volume range [v2;v3].

This procedure is repeated about 10 times in the specific volume range under interest [v0;v*] where v* rep-
resents the maximum shocked specific volume in the pressure range under interest. For example, pressure
range of the order of 1–1,000,000 atm is considered here.
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The piecewise linear function l is then fitted by a reduced function, as shown in Fig. 12.
The fitted function �l is directly used in the numerical scheme based on (4.6). Excellent agreement with the

exact solution is obtained. There are however some restrictions:

� The function �l is valid only for shock waves propagating in a mixture of initial state ðv0; u0; p0; Y 10; a10Þ.
� It is valid for the numerical scheme used for the calibration of the function �l. This is not surprising as any

numerical scheme has its own numerical diffusion. For example, if the order of accuracy is increased, the
function �l has to be re-determined by the procedure described previously.

In order to illustrate the validity of the method for shocks of arbitrary strength in a given initial two-phase
mixture, various shock tube tests are done. The function �l of Fig. 12 is implemented and tested for different
shock intensities propagating into the epoxy–spinel mixture of previous sections. Results are shown in Fig. 13.
For each shock intensity, they show a perfect agreement.
5. Eulerian scheme

The Eulerian scheme is derived from the preceding Lagrangian scheme by projecting the solution on the
Eulerian grid. However, the presence of a non-conservative variable prevents the use of a conventional pro-
jection method (Godunov projection for example). A specific relaxation-projection method was introduced in
Saurel et al. [26] in the context of the Euler equations. This method is based on a multiphase description of the
flow inside a computational cell. Its framework is thus extended easily to the present context of multiphase
mixtures.

5.1. Relaxation system

The propagation of the various Lagrangian cell boundaries in the Eulerian cell delimitate a maximum of
three sub-volumes in the computational cell, as shown in Fig. 4. These sub-volumes are in fact segments whose
lengths are directly obtained from the Lagrangian cells boundaries velocities:
L1 ¼ maxð0; u�i�1=2ÞDt; L3 ¼ �minð0; u�iþ1=2ÞDt; L2 ¼ Dxi � L1 � L3:
Normalized length correspond to sub-volumes fractions bj ¼
Lj

Dxi
; j ¼ 1; . . . ; 3.

In the present multiphase flows context, each sub-volume contains now several phases k with volume frac-
tions ak.

At the end of the Lagrange step, each Lagrangian cell contains a state in disequilibrium with its neighboring
cells states. It means that the Eulerian cell also contains three sub-volumes with three non-equilibrium states.
In particular, three different velocities and pressures are present in the cell. Determination of the average state
in the Eulerian cell consists in determining the equilibrium state that results of the acoustic interactions with
the various sub-volumes and states. This equilibrium state is only a mechanical equilibrium one: all pressures
and velocities must relax to an equilibrium pressure and velocity. The temperatures must remain in non-equi-
librium. Following Saurel et al. [26] the multiphase extension of the relaxation system that drives the various
sub-cell states to mechanical equilibrium reads:
oajkbj

os
¼ d

Zjk
ðpj � pIÞ;

oajkbjqjk

os
¼ 0;

oajkbjqjkuj

os
¼ dZjkðuI � ujÞ;

ð5:1Þ
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¼ d uIZjkðuI � ujÞ �
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Z
ðpj � pIÞ

� �
with uI ¼

P
jkZjkujP

Z
and pI ¼

P
jk

pj

ZjkP
1
; ð5:2Þ
j jk jk jk Zjk
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where ajk represents the volume fraction of phase k in the sub-volume j, with j = 1,2,3 and k = 1,2,. . .,K. K is
the total number of phases. The acoustic impedance of phase k is defined by: Zk = qkck.

The solution of this system when s! +1 provides the relaxed mechanical equilibrium state. It can be
shown easily that system (5.1) guarantees conservation properties of the mixture and entropy production.

As only the relaxed asymptotic state is required, a time accurate integration of (4.1) is unnecessary. Approx-
imate integration of the energy equations reads:
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Fig. 13. Accuracy of the heat exchange function �l for different shock intensities. From top to bottom, pressure in the high pressure
chamber is set to 50, 100 and 150 GPa. For each shock intensity, results are in perfect agreement.
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e�jk � e0
jk þ p̂Ijkðv�jk � v0

jkÞ ¼ qjk ð5:3Þ
with qjk ¼ 1
2
ðu� � u0

j Þð2ûIjk � ðu� þ u0
j ÞÞ.The choice of averaged interfacial variables is linked to the two follow-

ing constraints:

� energy conservation,
� entropy inequality.

In the single phase flows context examined in Saurel et al. [26] it was shown that ûIj ¼ u� and p̂Ij ¼ p� were
simple estimates to satisfy these constraints and accurate enough to build an algorithm for single phase flows.
In the multiphase flow context, these estimates are still admissible. Energy conservation is obviously fulfilled
and approximate integration of the entropy equations reads:
T 0
jkðs�jk � s0

jkÞ ¼
1

2

cjk

Cjk

ðu� � u0
j Þ

2Z0
jk

2 þ ðp� � p0
j Þ

2

Z�jk
2 þ Z0

jk
2 cjk

Cjk
� 1

� �� � : ð5:4Þ
More sophisticated estimates have been found under preceding constraints and tested numerically. Few dif-
ferences were observed. Thus we retain in the present study:
ûIj ¼ u� and p̂Ij ¼ p�: ð5:5Þ
5.2. Algorithm

Let us denote with superscript ‘0’ the variables in the Lagrangian sub-volumes. Superscript ‘*’ will denote
the relaxed state, or cell averaged variables.

The mass conservation of the mixture implies:
q� ¼
X

jk

b�j a
�
jkq
�
jk ¼

X
jk

b0
j a

0
jkq

0
jk ¼ q0 ¼ q; ð5:6Þ
and the mass conservation of the phases read:
ðaqÞ�k ¼
X

j

b�j a
�
jkq
�
jk ¼

X
j

b0
j a

0
jkq

0
jk ¼ ðaqÞ0k ¼ ðaqÞk: ð5:7Þ
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Conservation of the mixture momentum reads:
X
jk

b�j a
�
jkq
�
jku�j ¼

X
jk

b0
j a

0
jkq

0
jku0

j : ð5:8Þ
The relaxed state is characterized by a unique velocity u�j ¼ u�. Eq. (5.9) thus provides the relaxed velocity:
u� ¼
P

jkb
0
j a

0
jkq

0
jku0

jP
jkb

0
j a

0
jkq

0
jk

: ð5:9Þ
The determination of the relaxed pressure requires the use of the phases EOS: ek = ek(vk,pk).
For a given cell, p* and the v�jkðj ¼ 1; 2; 3; k ¼ 1; . . . ;KÞ form a set of 3K + 1 unknowns.
Relation (5.4) with (5.6) provides 3K equations that may be written as:
e�jkðv�jk; p�Þ � e0
jk þ p�ðv�jk � v0

jkÞ ¼
1

2
ðu� � u0

j Þ
2
: ð5:10Þ
The last equation to close the system is obtained by the saturation constraint ð
P

jkbjajk ¼ 1Þ under the form:
X
jk

mjkvjkðp�Þ � 1 ¼ 0; ð5:11Þ
where mjk = bjajkqjk denotes the mass in each sub-volume, which is constant during the relaxation process.
System (5.10) completed by (5.11) forms a non-linear systems solved by a Newton–Raphson method. Actu-

ally, the iterative process only depends on the pressure p* and this method is not very expensive in computa-
tional time.

However, it is possible to replace this iterative procedure by a direct one when the computation does not
contain strong pressure gradient. Following again [26], when Maxjð

pj�p1

p1
Þ < e (typically e = 0.01) the mixture

EOS (1.2) can be used under the form:
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: ð5:12Þ
5.3. Examples and validations

We now examine the behavior of the Eulerian method on various test cases.

5.3.1. Advection of a discontinuity
A discontinuity of volume fraction (thus a discontinuity of the mixture density) is moving in a uniform

pressure and longitudinal velocity flow at velocity 100 m/s. Initially the discontinuity is located at
x = 0.5 m in a 1 m length tube. This discontinuity separates two nearly pure fluids, liquid water on the left
with qwater = 1000 kg m�3, defined by the SG EOS parameters cwater = 4.4, P1,water = 6 · 108 Pa and air on
the right defined by qair = 10 kg m�3 and the EOS parameters cair = 1.4 and P1,air = 0 Pa. In the left chamber,
the volume fraction of the water is set to awater = 1 � e and in the right chamber its value is awater = e
(e = 10�8). The pressure is set uniform and equal to P = 105 Pa.

The numerical solution is plotted in Fig. 14 at time t = 2.79 ms and is compared to the exact one. A mesh
involving 200 cells is used and a second order extension of both Lagrange and projection steps are used. Such
extension is detailed in Saurel et al. [26]. The Lagrange method is used under the simplest formulation
described in Section 2. No artificial heat exchange is used.

The agreement between both solutions is excellent and the solution is free of oscillations, except regarding
the Mach number. This variable shows an interesting feature. As the volume fraction varies at the interface,
the sound speed varies too with a non-monotonic behavior, as shown in Fig. 6. It results in important vari-
ations of the Mach number in the artificial diffusion zone of the interface. Clearly, at least one sonic point
appears at the interface, even for the moderate flow velocity under interest. This puts in evidence an important
feature of the Lagrange-relaxation-projection method developed herein. During the Lagrange step, there is no
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need to account for the expansion fan and sonic points with the 2-shocks Riemann solver. Only the velocity
and pressure at the contact discontinuity are needed. Then the projection step is done without any Riemann
solver, eliminating the difficulties in the expansion fan. This is different of conventional Eulerian methods
where Riemann invariants have to be solved (this is very difficult and expensive here with Relation (1.9))
or approximated. Approximating Riemann invariants when the sound speed has the non-monotonic behavior
of Fig. 6 is an issue. With the present method this tricky issues are avoided, resulting in a very robust algo-
rithm as illustrated in the next examples.
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5.3.2. Shock tube problem with almost pure fluids

We consider in this example the single phase limit in order to check the method convergence for interface
problems between pure fluids: water on the left and air on the right. The same initial data as those of Fig. 2 are
used and the solution is shown at the same instant in Fig. 15. A mesh involving 1000 cells is used in order to
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show convergence of the solution. The same algorithm as in the preceding example is used with piecewise lin-
ear reconstruction and without artificial heat exchanges. The solution is compared to the exact solution of the
Euler equations.

This test clearly shows that interfaces computation with the present algorithm can be done very efficiently.
The mixture remains conservative and there is no need to use artificial heat exchanges.

5.3.3. Tests with the Mie–Grüneisen (MG) equation of state

In order to show the method capabilities, in particular when dealing with more general equations of states,
we now consider some tests using the MG EOS.

When dealing with such complex EOS, several modifications have to be made in the algorithm:

� The last two equations of system (1.18) are replaced by (1.17) during resolution of the Riemann problem. It
means that for a given estimate of the pressure p* a nonlinear system of two equations with the two specific
volumes as unknowns has to be solved.
� An iterative resolution of system ((3.7)–(3.9)) is done instead of the direct Lagrangian cell pressure compu-

tation by (3.10).
� The relaxation-projection in the Eulerian cell is achieved with system (5.10) and (5.11) that forms a non-

linear system with seven unknowns (the cell pressure and the various specific volumes).
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Fig. 16. Advection of a volume fraction discontinuity in a uniform pressure and velocity flow with the Mie–Grüneisen EOS. Comparison
of the Lagrange-relaxation-projection method with Superbee slope limiter (symbols) and the exact solution (solid). A 200 cells mesh is
used. An excellent agreement is observed.
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In the first example, we consider a contact discontinuity, corresponding here to a volume fraction discon-
tinuity moving in a uniform pressure and longitudinal velocity flow at velocity 1000 m/s and pressure of
2 · 1010 Pa. This discontinuity separates two nearly pure fluids: a real gas on the left with qgas = 2182 kg m�3

and air on the right with qair = 100 kg m�3. In the left chamber, the volume fraction of the real gas is set to
agas = 1 � e and in the right chamber its value is agas = e (e = 10�8). The real gas is described by the JWL EOS
[15] presented under MG form: pðq; eÞ ¼ qCðe� e1ðqÞÞ þ p1ðqÞ with
Fig. 17
the Eu
e1ðqÞ ¼
A

qrefR1

e�R1
qref

qð Þ þ B
qrefR2

e�R2
qref

qð Þ þ j
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qref
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p1ðqÞ ¼ Ae�R1
qref

qð Þ þ Be�R2
qref
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qref

q

� ��ðCþ1Þ

:

The different constants involved in these relations are:
j ¼ pCJ � Ae
�R1

qref
qCJ

� �
� Be

�R2
qref
qCJ

� �
� qCJCCvT CJ

" #
qref

qCJ

� �Cþ1

:

The data used in the present simulations are: C = 0.35, A = 353.91 · 109 Pa, B = 3.45 · 109 Pa, R1 = 4.15,
R2 = 0.9, Cv = 815 J/kg/K, qref = 1590 kg/m3, qCJ = 2182 kg/m3, pCJ = 2 · 1010 Pa, TCJ = 3686 K.

Air is described by the SG EOS with parameters cair = 1.4 and P1,air = 0 Pa.
The discontinuity is initially located at x = 0.5 m. Results are presented in Fig. 16 at time t = 270 ls.
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The second example is the shock tube problem with the MG EOS presented in Saurel et al. [26], in Section 3.
In this test case, a single fluid governed by the Cochran–Chan [7] EOS is considered. This EOS is also of MG
type. As there is a single fluid, the Godunov method is expected to work. However, it was shown in Saurel
et al. [26] that due to the nonlinearity of p1(q) in the EOS, the Godunov method was producing pressure
and velocity oscillations. A cure to these difficulties was proposed in the same reference. Here, with the help
of the multiphase flow model, these difficulties can be solved by considering the single MG fluid as a two-phase
media, the initial discontinuity in the shock tube separating the two phases.

Initially, the high pressure chamber is set to 2 · 1010 Pa, while the pressure is set equal to 2 · 105 Pa in
the low pressure chamber. Both chambers are filled with two phases of liquid nitromethane, governed by the
MG EOS which densities are respectively set to 1134 kg/m3 and 1200 kg/m3. In the high pressure chamber,
volume fraction of the first phase is set to a1 = 1 � e and in the right chamber its value is a1 = e (e = 10�8).
Then, the model is used in the single phase limit. All details regarding the EOS and initial data are given in
Saurel et al. [26]. Solution is presented at time t = 70 ls in Fig. 17. The Lagrange-relaxation-projection
method is compared to the exact solution of the Euler equations. Results are similar to those of Saurel
et al. [26] with the correction used in the projection stage of the solution onto the Eulerian grid. A magni-
fied view of pressure and velocity around the contact discontinuity is given in Fig. 18. It presents a solution
free of oscillations.

5.3.4. Shock tube problem with mixtures of materials with the Eulerian method

We now consider the shock tube test problem with mixtures of materials with the same initial data as those
of Figs. 3, 5, 7, 10 and 11. The numerical solution is shown in Fig. 19 and compared with the exact solution at
time t = 29 ls.

Numerical solution and exact one are in excellent agreement. However, it is worth to mention that the Eule-
rian method does not present the same artificial shock smearing as the pure Lagrangian method used in
Fig. 10. Consequently, the heat exchange function l has to be rebuilt. The procedure described in Section
4.3 is reused with the Eulerian algorithm of the present section. The corresponding �l function is shown in
Fig. 20.

5.3.5. Two-dimensional example

The aim is to show the ability of the method to deal with multi-dimensional and multi-phase simulations
involving complex equations of states. In 1D the solution is computed in two steps which can be summarized
as follows:
Fig. 18
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U nþ1
i ¼ LX ;DtðUn
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where LX,Dt = LProjectionLLagrange is the succession of the Lagrangian step, which computes the solution in
the Lagrangian cells and of the relaxation-projection step, which projects the solution onto the Eulerian
grid.

In multi-dimensional case a splitting strategy was used [31]. Thus, the solution is computed by:
Unþ2
i ¼ LX ;DtLY ;DtLY ;DtLX ;DtðU n

i Þ:
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In order to illustrate the capabilities of the method, we consider a two-dimensional test dealing with impact of
a projectile on a tank containing two different fluids. The initial configuration is detailed in Fig. 21. This
problem involves four fluids: air, copper, real gas (RG) and liquid nitromethane (NM). Air and copper are
governed by the SG EOS. The parameters for the copper are ccopper = 4.22 and P1,copper = 324 · 108 Pa.
The real gas is described by the JWL EOS used in the example of Fig. 16 while the liquid nitromethane obeys
the Cochran–Chan EOS used in the example of Fig. 17. Initially, densities of each fluid are: q0

air ¼ 1 kg=m3,
q0

copper ¼ 9000 kg=m3, q0
RG ¼ 1590 kg=m3 and q0

NM ¼ 1134 kg=m3. The projectile impacts the tank at the veloc-
ity of 10 km/s.

We can see that this test involves strong densities ratios (of the order of 104), four different EOS with two
complex ones, and very strong shocks due to the velocity of the projectile. Results are shown in Fig. 22 at
different times.

It is interesting to note the ability of the method to predict the ‘cavitation’ effect that appears in the pro-
jectile. Due to multi-dimensional dynamics of expansion waves, the projectile is over expanded after shock
loading. It results in a vacuum pocket that dynamically appears in the projectile, forming a solid shell on
the left part of it. Shell formation is a well-known phenomena in the physics of high velocity impacts [32].
The present method is able to deal with the dynamic appearance of interfaces.
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Fig. 21. Schematic view of the two-dimensional test. A copper projectile impacts a copper tank surrounded by air and filled with a real gas
and liquid nitromethane. Both copper and air are governed by the SG EOS. The real gas is described by the JWL EOS used in the example
of Fig. 16 while the liquid nitromethane obeys the Cochran–Chan EOS used in the example of Fig. 17.



Fig. 22. Impact of a projectile on a tank containing two fluids. Mixture density gradients are shown at times 11, 33, 52, 81, 102 and 193 ls.
A 500 · 500 cells mesh is used. The method treats without difficulty the presence of multiple interfaces.
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6. Conclusion

The relaxation-projection method developed in Saurel et al. [26] is extended to the non-conservative hyper-
bolic multiphase flow model of Kapila et al. [13]. The non-conservative character of this model poses however
computational challenges in the presence of shocks. Thanks to the Rankine–Hugoniot relations proposed in
Saurel et al. [27] exact and approximate 2-shocks Riemann solvers are derived. But an important difficulty
appears for the computation of the correct energy partition between phases under strong shocks in cell average
states. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the
energies is reached by using an artificial heat exchange in the shock layer. With the help of an asymptotic anal-
ysis this heat exchange takes a differential form that can be used in the shock layer only. The Lagrangian
scheme thus combines Riemann solvers and artificial heat exchanges. An Eulerian variant is then obtained
by using the relaxation-projection method developed earlier [26]. The method is validated against exact solu-
tions based on the multiphase shock relations as well as exact solutions of the Euler equations in the context of
interface problems. The method is able to solve interfaces separating pure fluids or heterogeneous mixtures
with very large density ratios and with very strong shocks.
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